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Abstract—In this paper, the finite – difference approach, the 
continuous problem domain is “discretized″, so that the dependent 
variables exists only at discrete points. Derivatives are approximated 
by differences, resulting in an algebraic representation of the partial 
differential equation (PDE). Hence a problem involving calculus 
transforms into an algebraic problem. 
Multiple considerations determine whether the solution so obtained 
will be a good approximation to the exact solution of the original 
PDE. Among these considerations are truncation error, round off 
error and consistency, all of which is discussed in the current paper. 
There are two types of numerical method for solving mathematical 
equations. The first type approximates the unknown function in the 
equation by a simple function often a polynomial or piecewise 
polynomial function, chosen to closely follow the original equation. 
The second type of numerical method approximates the equation of 
interest, usually by approximating the derivatives of integrals in the 
equation. Such numerical procedures are often called finite 
difference methods. Most initial value problems for ordinary 
differential equations and partial differential equation are solved 
using this method Numerical method for solving differential and 
integral equation. involves both approximation theory and the 
solution of large and non linear system of equations.. 

1. INTRODUCTION  

In this paper, basic concepts and techniques needed in the 
formulation of finite – difference and finite – volume 
representations are developed. In the finite – difference 
approach, the continuous problem domain is “discretized″, so 
that the dependent variables are considered to exist only at 
discrete points. Derivatives are approximated by differences, 
resulting in an algebraic problem. 

The nature of the resulting algebraic system depends on the 
character of the problem posed by the original PDE. 
Equilibrium problems usually result in a system of algebraic 
equations that must be solved simultaneously throughout the 
problem domain in conjunction with specified boundary 
values. Marching problems result in algebraic equations that 
usually can be solved one at a time (although it is often 
convenient to solve them several at a time). Several 
considerations determine whether the solution so obtained will 
be a good approximation to the exact solution of the original 
PDE. Among these considerations are truncation error, round 

– off and consistency, all of which will be discussed in the 
present work 

Finite Differences 

One of the first steps to be taken in establishing a finite – 
difference procedure for solving a PDE is to replace the 
continuous problem domain by a finite difference mesh or 
grid. As an example, suppose that we wish to solve a PDE for 
which u(x, y) is the dependent variable in the square domain 
0≤x≤1, 0≤y≤1. We establish a grid on the domain by replacing 
u(x, y) by u (ὶ∆x, j∆y). Points can be located according to 
values of i and j, so difference equations are usually written in 
terms of the general point 

2. DIFFERENCE REPRESENTATIONS OF PARTIAL 
DIFFERENTIAL EQUATIONS 

Truncation Error  

As a starting point in our study of T.E., let us consider the heat 
equation 
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Using a forward-difference representation for the time 
derivative ሺݐ ൌ  ሻ and a central-difference representationݐ∆݊
for the second derivative, we can approximate the heat 
equation by  
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However, we noted that T.E.s were associated with the 
forward and central-difference representations used in Eq. 
(3.2). If we rearrange Eq. (3.1) to put zero on the right-hand 
side and include the T.E.s associated with the difference 
representation of the derivatives, 

Wave Equation 

The one-dimensional (1-D) wave equation is a second-order 
hyperbolic PDE given by  
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This equation governs the propagation of sound waves 
traveling at a wave speed c in a uniform medium. A first-order 
equation that has properties similar to those of Eq.(2.3) is 
given by 
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ൌ 0	ܿ ൐ 0	ሺ3.4ሻ 

Note that Eq. (3.3) can be obtained from Eq. (3.4).We will use 
Eq.(3.3) as our model equation and refer to it as the first-order 
1-D wave equation, or simply the “wave equation″. This linear 
hyperbolic equation describes a wave propagating in the x 
direction with a velocity c, and it can be used to “model″ in a 
rudimentary fashion the nonlinear equations governing 
inviscid flow. Although we will refer to Eq. (3.4) as the wave 
equation, the reader is cautioned to be aware of the fact that 
Eq. (3.3) is the classical wave equation. More appropriately, 
Eq. (3.4) is often called the 1- D linear convection equation. 

The exact solution of the wave equation Eq. (3.4) for the pure 
initial value problem with initial data 

,ݔሺݑ 0ሻ ൌ ሻݔሺܨ	 	െ ∞ ൏  ሺ3.5ሻ	ݔ

Is given by  

,ݔሺݑ ሻݐ ൌ ݔሺܨ	 െ  ሺ3.6ሻ	ሻݐܿ

Let us now examine some schemes that could be used to solve 
the wave equation. 

Euler Explicit Methods: 

The following simple explicit one-step methods, 
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Have truncation errors (T.E.s) of O [∆t, ∆x] and O [∆t,ሺ∆ݔሻଶሿ, 
respectively. We refer to these schemes as being first-order 
accurate, since the lowest-order term in the T.E. is first order, 
i.e., ∆ݐ and	∆ݔ	.. These schemes are explicit, since only one 
unknown ݑ௝

௡ାଵ appears in each equation.  

Unfortunately, when the von Neumann stability analysis is 
applied to these schemes, we find that they are unconditionally 
unstable. These simple schemes, therefore, prove to be 
worthless in solving the wave equation. Let us now proceed to 
look at methods that have more utility. 

Upstream (First-Order Upwind or Windward) 
Differencing Method 

The simple Euler method, can be made stable by replacing the 
forward space difference by a backward space difference, 
provided that the wave speed c is positive. If the wave speed is 

negative, a forward difference must be used to assure stability. 
For a positive wave speed, the following algorithm results: 
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This is a first-order accurate method with T.E. of O[∆t, 
∆x].The von Neumann stability analysis shows that this 
method is stable, provided that 

0 ≤ v ≤ 1 (3.9) 

Where v ൌ ௖∆௧

∆௫
 . 

Let us substitute Taylor-series expansions into Eq. for ݑ௝
௡ାଵ 

and ݑ௝ିଵ
௡ . 

The following equation result: 
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Equation (2.10) simplifies to 
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Note that the left-hand side of this equation corresponds to the 
wave equation and the right-hand side is the T.E., which is 
generally not zero. The significance of terms in the T.E. can 
be more easily interpreted  
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And take the partial derivative of Eq. (3.10) with respect to x 
and multiply by –c: 
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Adding Eqs. (3.12) and (3.13) gives  
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(3.14) 
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In a similar manner, we can obtain the following expressions 
for ݑ௧௧௧,  ௫௫௧ݑ	݀݊ܽ	௧௧௫ݑ

௧௧௧ݑ ൌ െܿଷݑ௫௫௫ ൅ ܱሾ∆ݐ,  ሿݔ∆

௧௧௫ݑ ൌ ܿଶݑ௫௫௫ ൅ ܱሾ∆ݐ,  	ሿݔ∆

௫௫௧ݑ ൌ െܿݑ௫௫௫ ൅ ܱሾ∆ݐ,  ሿݔ∆

 (3.15) 

Combining Eqs. (3.11),(3.14) and (3.15) gives 
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(3.16) 

An equation, such as Eq. (3.16), is called a modified equation. 
It can be thought of as the PDE that is actually solved (if 
sufficient boundary conditions were available) when a finite-
difference method 

The right-hand side of the modified equation [Eq. (3.16)] is 
the T.E., since it represents the difference between the original 
PDE and the finite-difference approximation to it. 
Consequently, the lowest order term on the right-hand side of 
the modified equation gives the order of the method. In the 
present case, the method is first- order accurate, since the 
lowest order term is ሾ∆ݐ,  ሿ . If v=1, the right- hand side ofݔ∆
the modified equation becomes zero, and the wave equation is 
solved exactly. In this case, the upstream differencing scheme 
reduces to 

௝ݑ
௡ାଵ ൌ ௝ିଵݑ	

௡  

Which is equivalent to solving the wave equation exactly 
using the method of characteristics. Finite-difference 
algorithms that exhibit this behavior are said to satisfy the 
shift condition. 

The lowest order term of the T.E. in the present case contains 
the partial derivative ݑ௫௫ , which makes this term similar to 
the viscous term in 1-D fluid flow equations. For example, the 
viscous term in the 1-D Nevier-stokes equation may be written 
as  

డ
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If a constant coefficient of viscosity is assumed. Thus, when v 
് 1, the upstream differencing scheme introduces an artificial 
viscosity into the solution. This is often called implicit 
artificial viscosity, as opposed to explicit artificial viscosity, 
which is purposely added to a difference scheme. Artificial 
viscosity tends to reduce all gradients in the solution whether 
physically correct or numerically induced. This effect, which 
is the direct result of even derivative terms in the T.E., is 
called dissipation. 

Another quasi- physical effect of numerical schemes is called 
dispersion. This is the direct result of the odd derivative terms 

that appear in the T.E. As a result of dispersion, phase 
relations between various waves are distorted. The combined 
effect of dissipation and dispersion is sometimes referred to as 
diffusion. 

3. CONCLUSION 
We obtained many new solutions of the wave equation using 
discretization. Methods and extended these method with the 
help of a suitable transformation. The computer symbolic 
system such as maple and mathematical allow us to perform 
complicated and tedious calculations. The solutions have 
different physical structures and depend on the boundary 
conditions. It is concluded that the “Upstream method″ are 
very efficient in finding solution for the wave equation. 
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